
Exponential Smoothing 

Method

• To smooth out the irregular roughness means 
to see a clearer signal. 

• In time series smoothing is used to sweep out 
the finer grains. 

• For seasonal data, we might smooth out the 
seasonality so that we can identify the trend. 

• Smoothing doesn’t provide us with a model, 
but it can be a good first step in describing 

various components of the series. 

• Common technique: Moving average method

Most sophisticated and advanced smoothing 
technique is 
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Exponential 
Smoothing Methods
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Motivation of Exponential Smoothing

• Simple moving average method assigns equal 
weights (1/k) to all k data points.

• Arguably, recent observations provide more 
relevant information than do observations in the 
past.

• So we want a weighting scheme that assigns 
decreasing weights to the more distant 
observations.
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Exponential Smoothing

• Exponential smoothing methods give larger 
weights to more recent observations, and the 
weights decrease exponentially as the 
observations become more distant.

• These methods are most effective when the 
parameters describing the time series are 
changing SLOWLY over time.
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Data vs Methods
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Simple Exponential Smoothing

• The Simple Exponential Smoothing method is 
used for forecasting a time series when there is 
no trend or seasonal pattern, but the mean (or 
level) of the time series yt is slowly changing 
over time.

• NO TREND, No seasonality  model 

toty  +=
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Procedures of Simple Exponential 
Smoothing Method

• Step 1: Compute the initial estimate of the mean 
(or level) of the series at time period t = 0

• Step 2: Compute the updated estimate by using 
the smoothing equation

where 𝑦𝑇−1 is the actual value , ℓ𝑇−1being the 
smoothing value for 𝑦𝑇−1 and  is a smoothing 
constant between 0 and 1.

ℓ𝑇 = 𝛼𝑦𝑇−1 + (1 − 𝛼)ℓ𝑇−1
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SIMPLE EXPONENTIAL 
SMOOTHING (SES)

• The equation can also be written as
𝑙𝑡 = 𝑙𝑡−1 + 𝛼 𝑌𝑡−1 − 𝑙𝑡−1

the forecast error

• Then, the forecast is
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❖How is the first smoothing constant calculated?

smoothing values starts from l2 = Y1 (first value available)

❖How is this helping in forecasting values 

where actual values not present?

For example, if Y6, Y7, Y8, Y9…. has to be predicted, and 

only values till Y5 are given, we would be 

taking the last available value i.e. Y5 in the first term 

and our smoothed values would be our forecasted values.

Like l6=α*Y5 + (1- α)*l5
l7= α *Y5 + (1- α)*l6 

l8= α *Y5 + (1- α)*l6 ....
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Procedures of Simple Exponential 
Smoothing Method

Note that 

The coefficients measuring the contributions of the 
observations decrease exponentially over time.

ℓ𝑇 = 𝛼𝑦𝑇−1 + (1 − 𝛼)ℓ𝑇−1

= 𝛼𝑦𝑇−1 + (1 − 𝛼)[𝛼𝑦𝑇−2 + (1 − 𝛼)ℓ𝑇−2]

= 𝛼𝑦𝑇−1 + (1 − 𝛼)𝛼𝑦𝑇−2 + (1 − 𝛼)2ℓ𝑇−2

= 𝛼𝑦𝑇−1 + (1 − 𝛼)𝛼𝑦𝑇−2 + (1 − 𝛼)2𝛼𝑦𝑇−3+. . . +(1 − 𝛼)𝑇−2𝛼𝑦1 + (1 − 𝛼)𝑇ℓ0



SIMPLE EXPONENTIAL 

SMOOTHING (SES)

• Remarks on  (smoothing parameter).

– Choose  between 0 and 1.

– If  = 1, it becomes a naive model; if  is 

close to 1, more weights are put on recent 

values.  

– If  is close to 0, distant values are given 

weights comparable to recent values.  

Choose  close to 0 when there are big 

random variations in the data. 

–  is often selected as to minimize the MSE.
11



SIMPLE EXPONENTIAL 

SMOOTHING (SES)

• Remarks on  (smoothing parameter).

– In empirical works, 0.05    0.3 commonly 

used. Values close to 1 are used rarely.

– Numerical Minimization Process: 

• Take different  values ranging between 0 and 1.

• Calculate 1-step-ahead forecast errors for each .

• Calculate MSE for each case.

• Choose  which has the min MSE.
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SIMPLE EXPONENTIAL 

SMOOTHING (SES)

• EXAMPLE:
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Time Yt lt+1(=0.10) (Yt−lt)
2

1 5 - -

2 7 (0.1)5+(0.9)5=5 4

3 6 (0.1)7+(0.9)5=5.2 0.64

4 3 (0.1)6+(0.9)5.2=5.08 5.1984

5 4 (0.1)3+(0.9)5.28=5.0

52

1.107

TOTAL 10.945

74.2
1
=

−
=

n

SSE
MSE

• Calculate this for =0.2, 0.3,…,0.9, 1 and compare 
the MSEs. Choose  with minimum MSE



SIMPLE EXPONENTIAL 

SMOOTHING (SES)

• Some softwares automatically chooses the 
optimal  using the search method or non-
linear optimization techniques.

INITIAL VALUE PROBLEM

1. Setting S2 to Y1 is one method of
initialization.

2. Take the average of, say first 4 or 5
observations and use this as an initial
value.

14



Smoothing Technique



DOUBLE EXPONENTIAL SMOOTHING 

OR 

HOLT’S EXPONENTIAL SMOOTHING 



• Introduce a Trend factor to the simple 

exponential smoothing method

• Trend, but still no seasonality

SES + Trend = DES
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Holt’s Trend Corrected Exponential 
Smoothing

• If a time series is increasing or decreasing approximately at a 
fixed rate, then it may be described by the LINEAR TREND 
model

If the values of the parameters β0 and β1 are slowly changing 
over time, Holt’s trend corrected exponential smoothing 
method can be applied to the time series observations.

Note: When neither β0 nor β1 is changing over time,     
regression can be used to forecast future values of yt. 

• Level (or mean) at time T: 𝑙𝑇 =β0 + β1T

• Growth rate (or trend): β1

tt ty  ++= 10
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Holt’s Trend Corrected Exponential 
Smoothing

• A smoothing approach for forecasting such a 
time series that employs two smoothing 
constants, denoted by  and . (Two smoothing 
equations are needed (Why?))

• There are two estimates ℓT-1 and bT-1.

– ℓT-1 is the estimate of the level of the time 
series constructed in time period T–1 (This is 
usually called the permanent component).

– bT-1 is the estimate of the growth rate (β1

)(trend)of the time series constructed in time 
period T–1 (This is usually called the trend 
component).
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Holt’s Trend Corrected Exponential 
Smoothing

• Level estimate

• Trend estimate

where  = smoothing constant for the level (0 ≤  ≤ 1)

 = smoothing constant for the trend (0 ≤  ≤ 1)

1 1(1 )( )T T T Ty b  − −= + − +

1 1( ) (1 )T T T Tb b − −= − + −



HOLT’S EXPONENTIAL 
SMOOTHING (Forecasting)

• Two parameters :

 = smoothing parameter

 = trend coefficient

• h-step ahead forecast at time t is

• Trend prediction is added in the h-step ahead 
forecast.

21

( ) ttt hblhY +=ˆ

Current level Current slope due to trend



HOLT’S EXPONENTIAL 

SMOOTHING

• Initial value problem: 

– l1 is set to Y1

– b1=Y2−Y1 or (Yn−Y1)/(n−1)

 and  can be chosen as 

the value between 0.02< ,<0.2 

or by minimizing the MSE as in SES.

22



LEVEL+SEASONALITY+TREND

present

HOLT WINTERS EXPONENTIAL 

SMOOTHING METHOD
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Holt-Winters Methods

• Two Holt-Winters methods are designed for time series 
that exhibit linear trend 

- Additive Holt-Winters method: used for time series 

with constant (additive) seasonal variations

– Multiplicative Holt-Winters method: used for time 
series with increasing (multiplicative) seasonal 
variations

• Holt-Winters method is an exponential smoothing 
approach for handling SEASONAL data.

• The multiplicative Holt-Winters method is the better 
known of the two methods.
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Multiplicative Holt-Winters Method

• It is generally considered to be best suited to forecasting 
time series that can be described by the equation:

– SNt: seasonal pattern

– IRt: irregular component

• This method is appropriate when a time series has a 
linear trend with a multiplicative seasonal pattern for 
which the level (β0+ β1t), growth rate (β1), and the 
seasonal pattern (SNt) may be slowly changing over 
time.

0 1( )t t ty t SN IR = +  
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Multiplicative Holt-Winters Method

• Estimate of the level 

• Estimate of the growth rate (or trend)

• Estimate of the seasonal factor

where , , and δ are smoothing constants between 0 and 1,  

L = number of seasons in a year (L = 12 for monthly data, 
and L = 4 for quarterly data)

1 1( / ) (1 )( )T T T L T Ty sn b − − −= + − +

1 1( ) (1 )T T T Tb b − −= − + −

( / ) (1 )T T T T Lsn y sn  −= + −



HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

Here, (Yt /snt) captures seasonal effects.

s = # of periods in the seasonal cycles

(s = 4, for quarterly data)

Three parameters :

 = smoothing parameter

 = trend coefficient

 = seasonality coefficient

27



HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

• h-step ahead forecast

• Seasonal factor is multiplied in the h-step ahead 
forecast

 , and  can be chosen as 

the value between 0.02< ,,<0.2 

or by minimizing the MSE as in SES.

28
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HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

• To initialize Holt-Winter, we need at least one 
complete season’s data to determine the initial 
estimates of snt-s.

• Initial value:

29

ssYsY

s

YY

s

YY

s

YY

s
b

sYl

s

st

t

s

t

t

sssss

s

t

t

///bor 

1
.2

/.1

2

11

0

2211
0

1

0


















−








=








 −
++

−
+

−
=

=





+==

+++

=





HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

• For the seasonal index, say we have 6 years and 
4 quarter (s=4).

STEPS TO FOLLOW

STEP 1: Compute the averages of each of 6 years.

30

averagesyearly  The ,,,n,/YA
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HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

• STEP 2: Divide the observations by the 
appropriate yearly mean.

31

Year 1 2 3 4 5 6

Q1 Y1/A1 Y5/A2 Y9/A3 Y13/A4 Y17/A5 Y21/A6

Q2 Y2/A1 Y6/A2 Y10/A3 Y14/A4 Y18/A5 Y22/A6

Q3 Y3/A1 Y7/A2 Y11/A3 Y15/A4 Y19/A5 Y23/A6

Q4 Y4/A1 Y8/A2 Y12/A3 Y16/A4 Y20/A5 Y24/A6



HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

• STEP 3: The seasonal indices are formed by 
computing the average of each row such that
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HOLT-WINTER’S EXPONENTIAL 
SMOOTHING

• Note that, if a computer program selects 0 for  and 
, this does not mean that there is no trend or 
seasonality.

• For Simple Exponential Smoothing, a level weight 
near zero implies that simple differencing of the 
time series may be appropriate. 

• For Holt Exponential Smoothing, a level weight near 
zero implies that the smoothed trend is constant.

• For Winters Method and Seasonal Exponential 
Smoothing, a seasonal weight near one implies that 
a nonseasonal model may be more appropriate and 
a seasonal weight near zero implies that 
deterministic seasonal factors may be present. 
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 R code:An worked out example
 Make sure you have “tseries” and “forecast” package.

>AirPassengers

>plot.ts(AirPassenger) #(What do you see in the data? Any seasonality? Is it constant 
seasonality?) If constant then Additive Holt Winters smoothing is not then multiplicative Holt 
Winters)

>?HoltWinters

>HoltWinters(Airpassengers, beta=FALSE,gamma=FALSE) #without trend without seasonal 
component

➢ Y1<-HoltWinters(Airpassengers, beta=FALSE,gamma=FALSE) $fitted # giving out 
predicted figures

> HoltWinters(Airpassengers, beta=FALSE,gamma=FALSE) $SSE

➢ HoltWinters(Airpassengers, seasonal=c(“additive”,”multiplicative”) 

➢ HoltWinters(Airpassengers, seasonal=“additive”,start.periods=1950)

➢ #Now forecasting part >library(forecast)

>z<-forecast:::forecast.HoltWinters(y1,h=10)# 10 period ahead forecast (please look at three ::: 
very important)

>plot(z) #Now interpret the results

>plot(z)$residuals(Also you can plot residuals)

Holt-Winters exponential smoothing without trend and without seasonal compo



 1. Retrieve the data co2 from R repository

 2.Apply Holtwinters methodology. Which smoothing technique 
will you choose and why? Interpret on the values of all smoothing 
parameters and estimates.

 3. Predict all observations.

 4. Which season gives highest effect?

 5. Plot predicted and observed data points.If you start the 
prediction from 10 years after time points what type of change 
you will notice in SSE?

 6. Find out prediction sum of square

 7. Next forecast next four years values

 8. Plot forecasted values

 (For interpretation part you can look into the following website

 https://a-little-book-of-r-for-time-
series.readthedocs.io/en/latest/src/timeseries.html)


